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TABLE I
NORMALIZEDPROPAGATIONCONSTAiWSOF THE PROPERAND VASUOUSIMPROPER

MODES (o <lm(kz/kO) < II, o <Re(kz/kO) < 5) FORA GROUNDEDWAVEGUIDE
WITH A DLELECTRIC-FERRITECOMPOSITESUBSTRATE. LOWER DtELECTRtC LAYER

WITH h ~.21NII, h~.lmm, AND BIASED FERRITE LAYER (HO = HOan j WITH

.7,1 = 12.9, 67,2 = 12.6, 4TM. = 2750 G, HO = 825 Oe, FIeq = 20 GHz.

Proper Modes Improper Modes

E
Re(kz/kO)

#1 3.3705

#2 2.7107

#3 1.1443

#1

#2

#3

#4

#5

#6

#7

#8

#9

#10
.

Re(kZ/kO)

3.3527

0.0711

0.0748

0.0923

0.4336

0.8296

1.1063

1.1500

1.1794

1.4345

[m(k./kO)

o

-10:6579

-7.9868

-5.1117

-1.2679

-9.2161

-4.4223

-1.0485

-10.7319

-6.8996

GHz. The dispersion curves of these modes for frequencies below

20 GHz are shown in Fig. 3. The solid lines represent its frequency

behavior when the corresponding root lies on the proper sheet; the

dashed and dotted lines represent its mathematical prolongation on the

improper sheet. If the cutoff frequency is defined as that frequency

where the root of one mode passes through the branch cut, Fig. 3

shows that the fundamental TM slab-guided wave (marked by #1 ) has

no cutoff frequency, but the other two slab-guided modes show cutoff

frequencies at 7.35 and 14.55 GHz, respectively. Note that in open

structures, the cutoff frequency separates the nature of the mode into

proper and improper, rather than into propagating and evanescent. If

Fig. 3 is read from the right-to the left-hand side, we can observe how

the proper real mode #3 becomes an improper real mode at its cutoff

frequency. This improper real mode encounters another improper

real mode coming from high values of Re(kz /k. ) at 8.7 GHz, and

these two modes come together to form a complex improper mode

below this frequency. The transition between the physical bound and

unbound modes (that is, the proper real and the leaky modes) is made

throughout the nonphysical real improper mode. This type of conduct

has been previously reported in the literature and is usually known as

spectral gap [9]. The above behavior is also found for mode #2, but it

appears beyond the limits of Fig. 3. Moreover, the scheme described
for mode #3 is always found for all slab-guided modes of grounded

layered waveguides.

IV. SUMMARY

This work presented an efficient numerical procedure to compute

the propagation constants of both the proper and improper modes

of a planar bianisotropic layered waveguide bounded by upper and

bottom interfaces which can be simulated by impedance/admittance

dyads. The dispersion relation of the waveguide has been posed,

in a compact way, as the roots of a certain analytic (no poles or

branch cuts) function, and integral techniques are suggested to search

efficiently for these roots. The transition from proper to improper

modes in a grounded waveguide containing a biased ferrite layer has

been studied, and a spectral gap has been found in the prolongation

from the bound mode to the leaky mode.
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A Note on the Mode Characteristics of a Ferrite Slab

Hung-Yu Yang

Abstract-Properties of guided-wave modes of a ferrite slab propagat-

ing in the direction transverse to the bias field are reexamined. Anatytic

results for the frequencies where magmetostatic and dynamic modes exist

simultaneously are found. The method of eliminating the dynamic modes

in the magnetostatic-wave operation is described. The formulas for the

distinction of oscillatory and surface-wave modes are also derived.

I. INTRODUCTION

Guided-wave properties of a ferrite slab have been studied ex-

tensively in the past, for example with a magnetostatic analysis

[1]-[5] and with a full-wave analysis [6]–[10]. It has been found that

microwave devices with ferrite slabs are capable of space-frequency

selection of signals [11]. It has been well recognized that a ferrite
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Fig 1. Dispersion relation for the fundamental (magnetostatic) mode. If, = 500 Oe, 4rrJV10 = 1000 Gauss, AH = 10 Oe, d = 0.4 mm, ●f = 14.

slab supports magnetostatic surface modes if the guided waves are

in the direction transverse to the in-plane bias field. For such a

case, the magnetostatic analysis predicts that within a frequency

range, there exist a surface wave mode (wave decaying exponentially

from the air-ferrite interface). Also, for lower frequencies, there exist

infinite number of volume-wave modes (waves are oscillatory within

the ferrite slab). The magnetostatic analysis also predicts a mode

discontinuity from a volume wave to a surface wave. It has been

found with a full-wave analysis that the TM modes are unaffected

by the bias field and are identical to the modes of a dielectric slab.

The modes corresponding to the magnetostatic waves are TE modes.

With a full-wave analysis, it has been revealed that there may exist

an additional TE mode [6] that is not found from a magneto static

method. For magnetostatic wave applications, this dynamic mode

is a higher-order mode and is often undesirable. Although the full-

wave approach has been well developed. the clarification of the mode

properties is not complete. Parekh [7] discussed the distinction of

surface and volume wave modes for a grounded ferrite slab. It had

been found that for grounded ferrite slabs, there is no mode cut-off

and the magnetostatic modes and the dynamic modes do not exist

simultaneously. On the other hand, for a ferrite slab, the fundamental

(TE) mode has no cut-off and encounters infinite mode discontinuities

near ferrite resonance. These mode discontinuities can be identified

analytically, but they won’t exist physically. This may be proven by

introducing a small loss to the structure.

In this paper, the properties of guided-wave TE modes of a ferrite

slab are reexamined. The aim is to provide an understanding of the

properties of modes that have not been discussed previously. The

analytic formula for the cut-off frequency for the dynamic TE modes

and the method of eliminating this undesirable mode at the frequency

of interest is discussed. The identification of this cut-off frequency

and the method to eliminating it are also discussed.

IL ANALYSIS

The geometry of a ferrite slab is shown in Fig. 1. The slab is

assumed infinite in extent (z – y plane). The bias field is in the y

direction and the propagation is in the x direction. The permeability

tensor of the biased ferrites is

‘=’0[:::2: I’zl “)
where, including the magnetic loss (the damping term) [12]

(cd;+jw.)wm
&ll=l+

(w, +jwr)’ – w’ ‘
Wwn,

~“ = (w, +jti, )z – @2‘

(2)

(3)

tiz = -YPoH,, (4)

(5)

and

Wm = -7PO JW0, (6)

4rrAZ0 (Gauss) is the material saturation magnetization, H, (Oe) is

the applied magnetic field, AH is the resonance linewidth [12],
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Fig. 2. Dispersion relation for the dynamic (second) mode. H, = 500 Oe, 4 XLIO = 1000 Gauss, AH = 10 Oe, d = 0.4 mm, ef = 14.

and -YKO = 1.759 x 107 radfsec/Oe. The eigenvalue equation for

the phase constants of TE modes is found from the solution of

electromagnetic boundary value problem [6]:

where

*O= +.# – //
0,

(7)

(8)

(9)

(lo)

kO is the free-space wave number, k = ~ + ja is the complex phase

constant of the guided wave, cf is the dielectric constant of the ferrite

slab, and d is the slab thickness.

Numerical solutions of the characteristic equation in (7) provide

J — /.? diagrams for the propagating modes. With magnetic loss in-

cluded, Newton methods are used to solve the two-variable nonlinear

equations. The fundamental-mode w – 6 diagram of a low-loss ferrite

slab is shown in Fig. 1. Note that if l?e(q~) < 0 for a set of UJ

and k, the mode is a volume wave, and if lie(q~ ) > 0, the mode

is a surface wave. It is known that the magnetostatic surface wave

exists in the frequency range Wz(wz+um) < U < win/2 +W,.

The lower and upper frequency limits are referred to as w~ and

UA, respectively. The frequency dt corresponding to Re(qf ) = O

separates the volume wave and the surface wave. The lossless phase

constant at this frequency (/31) is found to have a simple analytic

form ((7) with u1l = O).

(11)

For frequency above ti~, this mode is similar to the magnetostatic

surface-wave mode found in a static analysis. The magnetostatic

mode properties have been well discussed and are not repeated here.

For frequency below Ul, the mode is a volume wave without cut-off.

For very low frequencies, the phase constant increases monotonically

but slowly with frequency, even at the ferrite resonance (w = w,),

and the mode is similar to the TEo mode of a dielectric slab.

For frequencies close to but less than tij, if the magnetic loss is

neglected, it is seen from (7) that when PI 1 is close to zero the mode

discontinuities occur. These mode cliscontinuities are not physically

possible. It is found that for small, but nonzero, magnetic loss, the

phase constant is a smooth function of o near the transition frequency

WI.

The additional mode found from the full-wave method is shown in

Fig. 2 and is referred to as a dynamic mode. The cut-off frequency

wt of this dynamic mode can be found analytically from (7) with

k = ko (or gO = O) as:

/( ~f
Wt= w, wz+———

)
~f—lw~ “

(12)

It is noted that since ef is greater than 1, the condition w~ < Wt al-

ways holds. The magneto static surface wave and the dynamic surface

wave may exist simultaneously. For the magnetostatic surface-wave

applications, this dynamic mode is undesirable and contributes to the

losses. In order to push the dynamic mode out of the frequency band

of the magnetostatic surface wave, tlhe condition w. < wt must hold,
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which corresponds to

(13)

In general, since cf is qtnte large, a large bias field is needed to satisfy

the above condition. The dynamic mode turns on as a surface wave.

As frequency increases, Re (q; ) decreases. When frequency becomes

greater than w, where lie(q~) = O, this dynamic mode becomes a

volume-wave (oscillatory) mode. This dynamic mode resembles to

the TEo mode of a dielectric slab for frequency greater than UJ..

The transition frequency AI, is found from the following equation

(AH s Oandyf = 0 in(7)):

/( )P.dGE=+&- & 2+.f#.*=o. (14)

The frequency range where strrfssce waves exist in a ferrite slab is

wl~ti<w..

III. CONCLUSION

In this paper, we reexamined the properties of guided-wave modes

of a ferrite slab. The phase constant of the fundamental mode in

transition from volume to surface wave were identified analytically.

It was also found that there is no mode discontinuity as long as

the magnetic loss is nonzero. The cut-off frequency of the dynamic

mode coexisting with the magnetostatic surface-wave mode was

identified analytically. The method of pushing this dynamic mode

out of the frequent y range of the magneto static surface-wave range

was described. The frequency range where surface-wave modes of a

ferrite slab exist was identified analytically. Outside this frequency

band, the ferrite slab is capable of supporting only oscillatory

modes.
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